Avoiding monochromatic solutions to 3-term equations

نویسندگان

چکیده

Given any equation and the integers $[n] = \{1,\dots,n\}$, one can ask: does every 2-coloring of $[n]$ contain at least as many monochromatic solutions (asymptotically) a uniformly random 2-coloring? We show that answer is no for 3-term linear with integer coefficients, i.e. there always exist 2-colorings asymptotically fewer than ones.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monochromatic Solutions of Exponential Equations

We show that for every 2-coloring of N and every k 2 N, there are infinitely many monochromatic solutions of the system of k2 equations zij = x yj i , 1  i, j  k, where x1, . . . , xk, y1, . . . , yk are distinct positive integers greater than 1. We give similar, but somewhat weaker, results for more than two colors. – Dedicated to the memory of Paul Erdős.

متن کامل

On monochromatic solutions of equations in groups

We show that the number of monochromatic solutions of the equation x1 1 x α2 2 · · ·xαr r = g in a 2-coloring of a finite group G, where α1, . . . ,αr are permutations and g ∈ G, depends only on the cardinalities of the chromatic classes but not on their distribution. We give some applications to arithmetic Ramsey statements.

متن کامل

Finding Patterns Avoiding Many Monochromatic Constellations

Given fixed 0 = q0 < q1 < q2 < · · · < qk = 1 a constellation in [n] is a scaled translated realization of the qi with all elements in [n], i.e., p, p + q1d, p + q2d, . . . , p + qk−1d, p + d. We consider the problem of minimizing the number of monochromatic constellations in a two coloring of [n]. We show how given a coloring based on a block pattern how to find the number of monochromatic sol...

متن کامل

Edge-colorings avoiding rainbow and monochromatic subgraphs

For two graphs G and H , let the mixed anti-Ramsey numbers, maxR(n; G, H), (minR(n; G, H)) be the maximum (minimum) number of colors used in an edge-coloring of a complete graph with n vertices having no monochromatic subgraph isomorphic to G and no totally multicolored (rainbow) subgraph isomorphic to H . These two numbers generalize the classical anti-Ramsey and Ramsey numbers, respectively. ...

متن کامل

Avoiding Monochromatic Sequences With Special Gaps

For S ⊆ Z+ and k and r fixed positive integers, denote by f(S, k; r) the least positive integer n (if it exists) such that within every r-coloring of {1, 2, . . . , n} there must be a monochromatic sequence {x1, x2, . . . , xk} with xi − xi−1 ∈ S for 2 ≤ i ≤ k. We consider the existence of f(S, k; r) for various choices of S, as well as upper and lower bounds on this function. In particular, we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Journal of Combinatorics

سال: 2023

ISSN: ['2150-959X', '2156-3527']

DOI: https://doi.org/10.4310/joc.2023.v14.n3.a1